CTI part 2

Oleh: Mike Yuliana PENS-ITS

TUJUAN DAN INSTRUKSIONAL KHUSUS

- Lanjutan aplikasi CTI(ACD)
 - Memahami tentang aplikasi CTI(IVR)
 - Memahami tentang langkah-langkah pembuatan IVR
 - Memahami cara penilaian kualitas sinyal suara secara subyektif dan obyektif

Aplikasi CTI-ACD(Automatic Call Distribution)

Cara menghitung jumlah operator yang dibutuhkan dalam sebuah call centre:

jumlah operator=total jumlah panggilan yang masuk jumlah panggilan yang harus dilayani operator

Soal 1:

Jika ada 100 panggilan yang datang dalam 1 jam dalam sistem call centre, kondisi yang diinginkan adalah setiap operator menerima 4 panggilan/jam.

- a. berapa jumlah operator yang dibutuhkan?
- b. berapa rata-rata waktu yang dibutukan 1 operator untuk menghandle panggilan?

Soal 2:

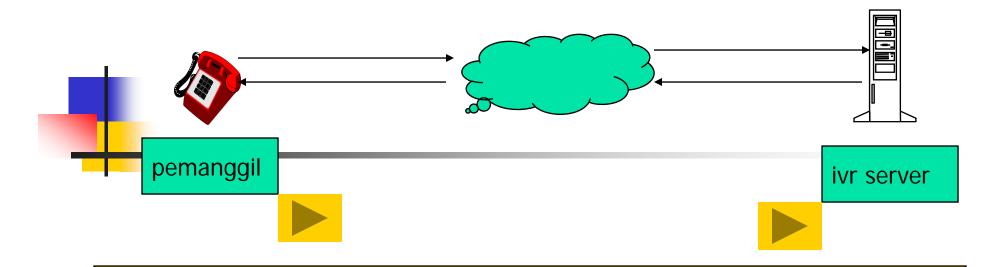
Sebuah call centre memiliki 12 operator dan menerima 600 panggilan selama jam sibuk. Rata-rata waktu yang dibutuhkan oleh operator untuk menghandle panggilan adalah 18 detik.

a. Dengan menggunakan Formula Erlang C

$$P_D = \frac{A^N}{N!} \frac{N}{N-A} P(0) = E_{2.N}(A)$$

$$P(0) = \left[\frac{NA^{N}}{N!(N-A)} + \sum_{x=0}^{N-1} \frac{A^{x}}{x!}\right]^{-1}$$

Berapa prosentase panggilan yang harus menunggu sampai operator menjawab panggilan tersebut!



rata-rata delay:
$$\overline{T} = h/(N-A)$$

rata-rata delay untuk seluruh panggilan: $\overline{T} = T'P_D$

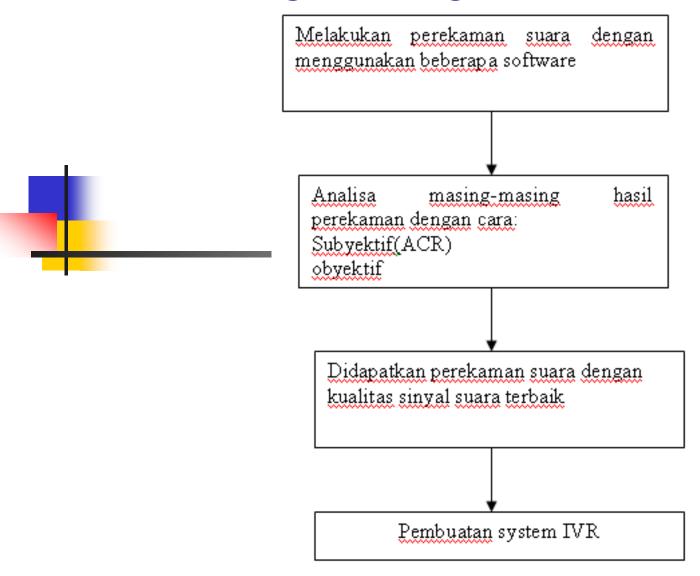
Aplikasi CTI-IVR(Interactive Voice Response)

IVR adalah teknologi yang menggunakan sistem telepon. Dimana pengguna telepon dtmf menerima pertanyaan dan direspon dengan menggunakan penekanan keypad telepon, sedangkan pengguna *rotary dial* merespon dengan menggunakan *Voice*(suara)

Keuntungan IVR

- Mengurangi waktu kerja dari operator/agent.
 - Mengurangi rasa jenuh karena pertanyaan sama yang dilakukan secara berulang-ulang
- Memberikan nilai tambah(value added) saat waktu tunggu
 - Tersedia untuk waktu yang tidak terbatas

Desain IVR


<u>produktif</u>

- Memiliki menu yang terstruktur
- Menggunakan voice recognition untuk telepon putar (rotary dial)
- Memastikan bahwa agen/operator tidak terlalu susah untuk dihubungi
- Penggunaan pesan untuk mengefektifkan waktu tunggu
- Penggunaan algoritma yang efisien untuk akses database
- Pengucapan fungsi terlebih dahulu daripada angka
- Mengkombinasikan IVR dengan aplikasi Web untuk menyediakan pelayanan yang maksimal bagi pelanggan

Tidak produktif

- Terlalu banyak opsion(lebih dari 5)
 - Tidak bisa kembali ke menu utama
 - Tidak bisa langsung berhubungan dengan operator

Langkah-langkah Pembuatan IVR

Cara subyektif-Metode ACR

Penilaian kualitatif terhadap hasil perekaman suara

Berdasarkan pada pengamatan hasil survey

Tabel 2.1 Skala Absolut pada Metode ACR

SKALA	KUALITAS	KETERANGAN	
	KOALITAS	KE IEKAH (OAL)	
ABSOLUT			
5	Excellent	Sangat jelas dan sangat	
		jernih	
4	Good	Jelas dan jernih	
3	Fair	Cukup jelas d <u>an cuku</u> p	
		<u>jernih</u>	
2	Poor	Tidak jelas dan tidak	
		<u>jernih</u>	
1	Bad	Sangat tidak jelas dan	
		sangat tidak jernih	

Cara perhitungan MOS:

$$\sum_{i=0}^{n} x(i).k$$

n

dimana:

x(i)=sample ke-i

k=skala absolut

n=jumlah pengamatan

Contoh kuisioner→survey

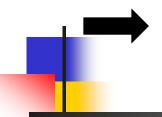
No	Nama File	1	2	3	4	5
1	a.wav					
2	b.wav					
3	c.wav					
4	d.wav					
5	e.wav					
6	f.wav					

1: bad

2:poor

3:fair

4:good


5:excellent

Soal

Hitunglah nilai MOS yang didapat dari hasil survey dibawah ini serta gambarkan grafiknya!

No	Format	Nilai					
	Perekaman	1	2	3	4	5	
1	PCM 6 KHz	5	4	2	7	2	
2	PCM 8 KHz	0	3	4	9	4	
3	PCM 11 KHz	2	3	4	5	6	
4	ADPCM 6	3	6	7	4	0	
	KHz						
5	ADPCM 8	0	0	8	4	8	
	KHz						
6	ADPCM 11	3	3	3	5	6	
	KHz						

Cara Obyektif-SNR(Signal to Noise Ratio)

perbandingan (ratio) antara kekuatan sinyal dengan kekuatan derau(*noise level*).

$$SNR = 10\log_{10}\left(\frac{S(t)^2}{N(t)^2}\right)$$

Soal

Hitunglah nilai SNR yang didapat dari tabel dibawah ini serta gambarkan grafiknya!

<u>^-</u>		1	
Format Perekaman	S(t)	N(t)	SNR
PCM 6 KHz	1.3379	0.1584	
PCM 8 KHz	17.0349	4,9982	
PCM 11 KHz	0.0307	0.0118	
ADPCM 6 KHz	0.0313	0.0112	
ADPCM 8 KHz	0.1507	0.0142	
ADPCM 11 KHz	1.7254	0.2090	